Behavior Based Control and Fuzzy Q-learning for Autonomous Mobile Robot Navigation

نویسندگان

  • Khairul Anam
  • Son Kuswadi
چکیده

This paper presents collaboration of behavior based control and fuzzy Q-learning for mobile robot navigation systems. There are many fuzzy Qlearning algorithms that have been proposed to yield individual behavior like obstacle avoidance, find target and so on. However, for complicated tasks, it is needed to combine all behaviors in one control schema using behavior based control. Based this fact, this paper proposes a control schema that incorporate fuzzy q-learning in behavior based schema to overcome complicated tasks in navigation systems of autonomous mobile robot. In the proposed schema, there are two behaviors which is learned by fuzzy q-learning. Other behaviors is constructed in design step. All behaviors are coordinated by hierarchical hybrid coordination node. Simulation results demonstrate that the robot with proposed schema is able to learn the right policy, to avoid obstacle and to find the target. However, Fuzzy q-learning failed to give right policy for the robot to avoid collision in the corner location.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Q-learning Based Continuous Tuning of Fuzzy Wall Tracking

A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...

متن کامل

Using Q-Learning and Fuzzy Q-Learning Algorithms for Mobile Robot Navigation in Unknown Environment

One of the standing challenging aspects in mobile robotics is the ability to navigate autonomously. It is a difficult task, which requiring a complete modeling of the environment. This paper presents an intelligent navigation method for an autonomous mobile robot which requires only a scalar signal like a feedback indicating the quality of the applied action. Instead of programming a robot, we ...

متن کامل

Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network

Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...

متن کامل

An Intelligent Control System for Mobile Robot Navigation Tasks in Surveillance

In recent years, the autonomous mobile robot has found diverse applications such as home/health care system, surveillance system in civil and military applications and exhibition robot. For surveillance tasks such as moving target pursuit or following and patrol in a region using mobile robot, this paper presents a fuzzy Q-learning, as an intelligent control for cost-based navigation, for auton...

متن کامل

Reactive Navigation of Autonomous Mobile Robot Using Neuro- Fuzzy System

Neuro-fuzzy systems have been used for robot navigation applications because of their ability to exert human like expertise and to utilize acquired knowledge to develop autonomous navigation strategies. In this paper, neuro-fuzzy based system is proposed for reactive navigation of a mobile robot using behavior based control. The proposed algorithm uses discrete sampling based optimal training o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013